INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, First Semester, 2023-24 Statistics - II, Backpaper Examination

Time: 3 hours
Maximum Marks: 50

1. Let X_{1}, \ldots, X_{n} be independent random variables with densities

$$
f_{X_{i}}\left(x_{i} \mid \theta\right)= \begin{cases}\frac{1}{2 i \theta} & \text { if }-i(\theta-1)<x_{i}<i(\theta+1) \\ 0 & \text { otherwise },\end{cases}
$$

$1 \leq i \leq n$, where $\theta>0$.
(a) Find a two-dimensional sufficient statistic for θ.
(b) Find the maximum likelihood estimator of θ.
2. Consider a random sample from $N\left(0, \sigma^{2}\right)$.
(a) Find the UMVUE of σ.
(b) Show that the UMVUE of σ is a consistent estimator.
(c) Find the asymptotic distribution of the UMVUE of σ.
3. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from Poisson (λ). Consider testing

$$
H_{0}: \lambda \leq 1 \text { versus } H_{1}: \lambda>1 .
$$

(a) Show that the conditions required for the existence of a UMP test are satisfied here.
(b) Derive the UMP test of level α.
4. A large shipment of parts is received, out of which 5 are tested for defects. Let X denote the number of defective parts in the sample, and θ be the proportion of defective parts in the population. From past shipments it is known that θ has a $\operatorname{Beta}(1,9)$ distribution.
(a) Find the HPD estimate of θ if $x=0$ is observed.
(b) Find a 95% credible set for θ if $x=0$ is observed.
(c) For testing $H_{0}: \theta \leq 0.10$ versus $H_{1}: \theta>0.10$, find the posterior odds ratio.

